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We study the reconstruction of a function defined on the real line from given,
possibly noisy, data values and given shape constraints. Based on two abstract
minimization problems characterization results are given for interpolation and
approximation (in the euclidean norm) under monotonicity constraints. We derive
from these results Newton-type algorithms for the computation of the monotone
spline approximant. © 1991 Academic Press, Inc.

1. INTRODUCTION

We consider the problem of reconstructing a real valued function,
defined on an interval of the real line, from a finite sample of, possibly
noisy, function values. We assume given a priori information about the
shape of the function. The shape constraints restrict the reconstruction to
some closed convex subset of the relevant function space. The approxima-
tion procedures used here include interpolation and least squares
approximation, There may also be additional lincar constraints; e.g., the
sum of the fitted values should be equal to a given value. Our approach is
based on using a minimization principle: the smoothing spline principle
[25, 23]. This paper parallels our papers [2, 1, 11], in which we con-
sidered constraining the second derivative. For a similar approach see also
[20, 17]. The starting point is a characterization of (a derivative of) the
constrained smoothing spline as the orthogonal projection of a finite sum
(with unknown coefficients) of certain basis functions. The projection is
onto the convex set determined by the particular shape constraint at hand.
The unknown coefficients are defined from interpolation conditions which
lead to a set of nonlinear equations. These are solved by Newton’s method.

The area of interpolation under monotonicity constraints has attracted
considerable attention (the case of smoothing less). Early papers include
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[4, 197. In [13] conditions on the derivatives are given to insure
monotonicity of a piecewise C'-cubic. This result was recently generalized
in [87]. Other papers are [ 16, 26, 7, 9, 24 and more recently [3, 127. The
last paper also gives a nice overview of the area. Utreras in {27] studies
approximation properties of monotone smoothing splines; see also (for
interpolation) [3, 9].

To our knowledge Hornung [147] was the first to consider using a mini-
mal principle when computing monotone interpolation splines. Dauner and
Reinsch {57 have recently given algorithms for computing monotone {and
positive; see also [22]) splines based on the minimization principle.
Hornung [157] and Varas {287 use methods from optimal control to devise
numerical methods. One difference between [5] and this paper is that,
apart from the fact that in [5] only interpolation is considered, the
algorithms in [5] are not of Newton type (they do not exhibit a quadratic
rate of convergence). On the other hand the numerical results presented
show that the suggested schemes perform quite well.

Our. paper is organized as follows. In Section2 we provide a self-
contained proof of an important characterization theorem for constrained
spline interpolation given by Micchelli and Utreras [217. As a corollary a
similar theorem for smoothing is obtained. Section3 deals with
monotonicity constraints. We apply the results of Section 2 and arrive at
characterization -results for interpolation, Theorem 34 (fixed end
derivatives) and Theorem 3.9 (free end derivatives). Theorems 3.5 and 3.10
give the corresponding results for smoothing.

In order to transform the results of Section 3 into numerical algorithms,
it is necessary to compute the orthogonal projections. In Section 4 we
investigate the general structure of the projection operator for the case of
monotonicity constraints. For the important case when the function to be
projected is piecewise linear and continuous we provide the characteriza-
tions of the projection in Theorem 4.6. For this case we supply an
algorithm which requires order n* operations (n+ 2 being the number of
data points) for the computation of the projection.

In Scction 5 Newton-type methods are derived, both for interpolation
and for smoothing. We also give local convergence results for these
schemes. In the last section we discuss computer implementation and
present some numerical results.

2. THEORY: GENERAL CONVEX CONSTRAINTS
In this section we study two abstract convex minimization problems in

a Hilbert space H. The first, P;, corresponds to an interpolation problem
and the second, P,, to an approximation problem.

640/66/3-6
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P;: Minimize | 1 ||* when

If=wand feCcH (2.1)

P.: Minimize p || f |*+ (z— y)" Q(z — y) when
If=Kz+u, Az=d, and fe CcH. (2.2)

Here C is a closed convex subset of H and I: H — R” denotes a bounded
linear mapping, /* denotes its dual, and 4, K are linear mappings.
K:R**' 5 R” has a full rank matrix, and 4:R"*/ > R™ The vectors u,
weR” yeR"*) and deR™ are given, as well as the positive definite
correlation matrix Q and the smoothing parameter p > 0. We may always,
by the Riesz representation theorem, write

If= ((Mlaf)a At (Mnaf))Tz (Mrf)ERn’ (23)

where M, e H, i=1,2,.,n and M= (M, M,,.,M,)" ¢ H" If
a= (0, t, .., ,)  €R” we will use in the following the notation
aATM=M"=3"_,0,M,.

A theorem very similar to the following for P; is given in [21]. We
provide a self-contained proof.

THEOREM 2.1. Suppose that int(C) I~ '(w)## . Then P; has a unique
solution | and f has the structure

[=Pa"M)=P(I*x)

with P, denoting the projection onto the closed convex set CcH and
= (0, 0y, oy &, ) Some vector in R". Conversely, if for a € R" the vector
[=P(a"M) satisfies the condition If =w, then f is the solution of P;.

Proof. Since the domain of the mapping /+ || f ||? is the closed convex
set Cn I '(w), it is clear that P; has a unique solution which we denote
by f and we may write

I (wy=f+ {M,, My, ., M,}*.

Let 37, B;M; be the vector in I"'(w) having the smallest norm and
q=X7_,B;M;—f Now take C,={vel '(w):(g,0—f)>0}. We have
that C; and C are convex, fedC, int(C)# &, and Cn C,=; cf. Fig. 1.
It is then a well-known consequence of the Hahn-Banach theorem (see,
e.g., [18]) that there exists a hyperplane £ through f with the equation
(ns, v—f)=0, separating C and C, and so that (n,v—f) <0 if veint(C)
(n, is an outward normal to C). Now there exists a vector uge I~ '(w)n
int(C). Therefore uo—fe {M,, M,, .., M, }" and (n/, u,—f) <0. It follows
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Side view . Top view

FiGURe 1

that the projection of n,on {M,, M,, .., M, }* is non-vanishing. Since, by
construction, # NI~ *(w)=4C, it follows that this projection is a multiple
of g. Since also (g, uo—f) <0, this multiple is positive and therefore we
may take

ne=q+ Y y,M,.

i=1

Now f= P.(f+n,), where

SHn= Z BiM;—q+q+ ), v,M;= Z oM,

ji=1 Jj=1 Jj=1

and therefore f= P(a"M). By definition of duality,

o (If) = ((I*a), )u,

whence we conclude, also using (2.3), that /*a=a"M e H.

Next assume that aeR” is given and that g= P {a"M) satisfies the
condition Ig=w. Let f'"M denote the orthogonal projection of «*M on
I7Y(w). It follows that g = B’ M — q’, where ¢’ is a normal vector to the set
I7'(w)yn C. But p’'TM must also be the projection of the null vector on
I~ !(w), previously denoted by B*M. From this we conclude that ¢’ = ¢ and
that g=f 1

COROLLARY 2.2. Suppose that
int(C)mn {f:3z, Az=d, If =Kz +u} # . (2.4)

Then problem P, has a unique solution (f,z)" e HxR"*'! and this solution
has the structure

[=Pca™M)=P(I*x), z=y+pQ "(4"B—K ), (2.5)
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where o = (&1, 0, ., %) € R", B = (B> By Br)T € R™, and M =
(M, M,, ..., M,)T e H". Conversely, if o and B are given and if f and z as
defined by (2.5) satisfy the side conditions in (2.2), then (f, z)T is the solution

of P,.
Proof. Introduce the notation F= (/) for elements in the Hilbert space
Hx R"*! = # with the inner product {-,-) defined by

<F1,F2>=(f1,f2)H+p*IZ}"Q22.
Let Fy=(9). Also let J: # — R"” x R™ be defined by

J(F)= (If ;ZKZ),

where If = (M, f) e R”. We are to minimize || F— F,| %, when F is confined
to the closed convex subset CxR"*‘e # and satisfies the equation
J(F)=(%). Now the condition int(Cx R"*")nJ~! (%) # & is equivalent to

int(C)xR* "'~ {(f) If=Kz+u, Az=d} # &,

ie., to (2.4). According to the previous theorem we therefore have

F—Fo=P e pmiro) <J* <;)> (2.6)

for some element (o, f)T e R"xR™, ie.,

(- reoweonl()

To complete the proof we need to calculate J* (3) when « e R"” and feR™
Suppose that J*(3)= (¢) € #. Then, by duality,

() so=( ()7,

(2) ((M’J;)Z_ Kz) —(g.f)+p "0z,

ie.,

ie.,

("M, f)—a Kz + TAz= (g, f)+p 70z
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This is to be valid for all fe H and ze R" "’ Therefore
g=o"MecH and c=pQ YATf—K"a).

Finally, using that F,= (‘;), we easily obtain

()-C)remwrn(@)-(27) - en

and it follows that (f, z)T solves P,.
Conversely, if (£, z)*, as defined by (2.5), satisfies (2.7) it follows that

F=(f,z)" satisfies (2.6) and by the previous theorem F is the solution
of P,. |

Remark 2.3. I, in particular, 4=0 and d=0, ie, if the condition
Az =d is not present, then, since K has full rank, the condition (2.4) is
satisfied as soon as int (C)# .

3. THEORY: MONOTONICITY CONSTRAINTS

In this section we apply the previous theory to problems P; and P, with
a constraint set obtained by restricting the values of x'(¢), for example by
requiring that x'(¢)>0 everywhere or that ¢(z)<x'(£)<y(t). In the
analysis we make a difference between two cases. In the first case we
assume that the derivative x’ is given in one or both of the endpoints. In
the second case we consider problems with free end derivatives, ie, we
impose no additional restrictions in the endpoints. Before proceeding let us
recall the following characterization of projections in a Hilbert space, to be
used later on. For a reference, see, for example, [187].

Remark 3.1. If H is a Hilbert space, C<H a closed convex subset,
ueH, and ve C then v=P.(u) if and only if (#—v, ¢)y <0 whenever
v+qgeC.

We introduce some further notation. Let {(z,, y;,)}/07, a=1,<t,< -+ <
t,.»=b, be given data points in R? which are to be interpolated or
approximated by some function x(¢), t€ [a, b]. 4! and 47 are first and
second order divided differences of this data set,

A!=yi+l_yi Az__A}+1"’A?_

i > i

ti+1_ti

D R

The functions M (1), i=1, 2, ..., n, are now linear B-splines, i.e., functions
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which are continuous, are piecewise linear, have sopp M, =[1,,1,.,], and
are normalized so that (2 M, () dt= 4. Similarly

My(t)=(t,— 1) [(t—t,)> and M, ()=(—1t,,1) (1, 2—1,1)

so that [2My(0)di=f°M,, (t1)dt=4 If x(¢) interpolates {(z;, y,)}7X}
then 4% and 42, | are defined as

A=A —x"(@)/(t,—1,) and A5, =(XB) =4, )/t 1,1 1)

and are naturally interpreted as second order divided differences with
two coinciding knots z,=1¢, and ¢, ,=t,,5. The data vector is
Y=(P1s Yoy e Vua2) €R*% and z=(x(,), x(t3), .y X(2,,,))" is the vec-
tor of function values, sometimes coinciding with y. By W?(a, b) we denote
the Sobolev space of all functions x such that x’ is absolutely continuous
on (a, b) and x” € L?(a, b). Further let

C,={xeW?a,b):x'(a)=x,}, 3.1
C.o={xeW?a,b):x'(a)=x,, and x'(b) = x} }, (3.2)

where x/, and x), are given constants.
Now let us consider the following constrained interpolation problem.

b
P, .(C'): Minimize J x"*(t) dt when x(z,) = y,,

i=1,2,.,n+2 andxeC,nC,
Co={xe W(a,b): p(t) <X'(1) <Y(1)}. (3.3)

Here C'=C, or C, for the case with fixed end derivatives and
C’ = W?(a, b) for the case with free end derivatives. The bounds ¢ and ¥
are measurable functions. We are primarily interested in the case when,
eg., o=0, Yy =00 or when ¢ and  are piecewise constant or linear. It is
almost obvious that this problem has a unique solution, provided that
C,,n C’ contains at least one function x with x(t,)=y,fori=1, 2, .., n+2.
Similarly, consider the approximation problem

b
P, .(C'): Minimize p j X"2(1) dt + (z— )T O(z —y) when Az =d

andxeC,,NnC,x(t;)=z,,i=1,2, ..,n+2.
Here Q is a positive definite matrix representing the correlation between
stochastic errors in the data vector y and p >0 is a smoothing parameter.

The equation Az=d with 4 an m x (n+ 2)-matrix, m <n+ 2, imposes m
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linear constraints on the vector z = (x(¢,), x(t,), ..., x(t,.,))". If, e.g., the
mean value of the function values is to be fixed, one should take
A=(1,1,..,1) This problem also has a unique solution, provided that
there exists at least one function xeC,, nC’ so that Az=d. In the
foillowing we will often refer to the problems P; ,,(C’), P, m(C') as simply
P m> Pa m, respectively. It should then be clear from the context which set
("’ is presumed.

We will make a reformulation of the problems P; ., and P, ,, so as to
conform to the abstract problems P; and P, of section 2. Taking divided
second differences in Taylor’s formula, one may easily establish the Peano
formula (see [6]),

b
j () M,(t)ydt=42,  i=1,2,..n. (3.4)

a

Moreover, if a function fe L*(a, b) satisfies the condition
b
J fOM(tydt=42,  i=1,2,..n, (3.5)

then there is a unique function xe W?(a b) with x(z,)=y, for
i=1,2,..,n+2and x"=f.

At this point it will be convenient to distinguish between the two cases,
fixed and free end derivatives.

3A. Fixed End Derivatives

Here we consider problems P; ,(C') and P, ,(C') with C'=C, or C,,;
1.e., we require that the derivative x’ be given in one endpoint or in both
endpoints.

We now show that the monotonicity problems P; ,,(C’) and P, (C')
are instances of the abstract problems P; and P,. The variants given after
“or” below apply to the case when both x'(a) and x'(4) are given.

We take C as the convex closed set

C=C,= {fe L*(a, b) : (1) éx;—i-ff(s) ds < lﬁ(l)}. (3.6)

Taylor’s formula at z=a may be written
(x", My) =43

and we conclude the following. If fe L*(a, b) is given then there exists a
function x e W?(a, b) with

’

x'(a)=x,, x(t;)=y;, i=1,2,..,mn x"=f
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if and only if f satisfies (3.5) and
(f, Mo) =

Moreover x is unique. Further, by Taylor’s formula at ¢ = b, it follows that
we have x'(b) = x}, if and only if f in addition satisfies

(LM, )=4,,.
Therefore let I: L*(a, b)) » R”*!, or I L*(a, b) » R" "2, be defined by
H: ((Mo,f), (Mlaf): ey (Mn’f))T:(M7f)T

or

H: ((M01f)’ (Mlsf)a [t (Mn+1>f))T= (Maf)T
We then have
If=(42, 4%, ., A2 =A*=Ky+u=w

or (3.7a)
If=(A(2),Af,.. +1)T—A2 Ky+u=w,
where
xl
U=— (1,0,0,..,0
(t,—11) )’
or (3.7b)
x5, X}, T
U= — (,0,0,..,0) "+ ————=——(0,0,.., 1)
(t,—11) (thr2a—tns1)

and where K:R""?2>R""! or K:R""?>R"*? is a mapping with a
full rank, three-banded upper triangular matrix depending only on

TR ST SR
For the condition (int C)nI YKy +u)+# & of Theorem 2.1 we now
have the following lemma.

LEMMA 3.2. Assume that

Y(r) <lim inf ¥ (7), () = lim sup (1), ast<b, (3.8)

Ll ()= (0)>0, (39)
p(a)<¥,<¥(@),  p(b)<x,<y(b), (3.10)

it

tiy
| Cos)ds<pi i —yi<|  ws)ds, i=1,2,.,n—1. (3.11)

L

Then int(C.;) N I~ (Ky +u) # 2.
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Proof. Consider the open point set
{(5, ) =R 1 p(t)<s<y(t),a<t<b}=Q R
It can be shown (the argument is omitted) that there exists & C™-function
s{t), a<r<b, such that
(s(2), t)e L2, a<t<bh,
s{a)=x,, s(b)=x, (3.12)

Y1+J‘is(f)d’t=yi for i=1,2, ., n+2

Take fy(t)=s'(¢). Then we have fye C,;. Further it 1s clear that f; is an
interior point of C,.. By the construction [f,= Ky +u and the proof is
complete. §

For the condition (2.4) of Corollary 2.2 we have the next lemma.

LemMma 3.3, Assume that (3.8)-(3.10) of Lemma3.2 are valid. Also
assume that the equation Az =d has a solution ze R"*? satisfying

Tt It

o(s)ds<zy,,—z.< | " (s) ds. (3.13)

Then the condition (2.4) is satisfied. -

The proof is similar to that of the previous lemma and is omitted.
Using Lemmas 3.2 and 3.3 and the preceding discussion we obtain the
following theorems for P; ., and P, ...

THeOREM 3.4. Suppose that ¢ and  satisfy (3.8)~(3.11). Let C=C,..
Then the unique solution xe W?(a,b) of P, . has the property that

x" =P {a"M) for some acR"** or R" "2 Conversely, if xeR"*! or R"*?
satisfies the system

b . .
j MP (o*M) dt = Ky +u. (3.14)

Then x" = P(a"M).

THEOREM 3.5. Suppose that ¢ and  satisfy (3.8)-(3.10) and that the
equation Az =d has some solution z satisfying (3.13). Let C=C,.. Then the



312 ANDERSSON AND ELFVING

unique solution x € W*(a, b) of the approximation problem P, ., has the

property
x"=Pa™M),
c (3.15)
z=y+pQ (AT~ K"a)

for some vectors e R"*! or R*™? and BeR™. o and B can be found by
solving the system

b
f MPo(e"M)dt =Kz +u
a (3.16)
Az=d.

Conversely, if a, B solves (3.16) then x" = P (a* M).
3B. Free End Derivatives

We now consider P; ,(C') and P, ,,(C’') without any restrictions on
x'(a) or x'(b) (C'= W?(a, b)), ie., with the constraint set

C,,={xeWa,b): () <x'(1)<Y(1)}.

In order to handle this case we first introduce the closed convex set

c= {(f, X)T e L(a, b) xR : p(1) <, + [ 1(6) dsswm},

the vector

Uy = _(1/(12 —I ))(1’ 09 09 veey O)T:
and
M: (Mo, Ml, caey Mn)T.

Then we formulate, for » =0, the versions P;(r) and P,(r) of P, and P,.
P,(r): Minimize fbfz(t) dt + rx> when
(M, f)—x,up=KyeR" 1 and (f, x,)e C
P (r): Minimize J:fz(l) dt +rx/>+p~(z—y)T Q(z—y) when

zeR"*2 Az=deR", (M, f)— x,uy= Kz e R"*,
and (f, x,)TeC.
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Consider first the case when r>0. Let H=L*a, b)xR have its norm
defined by ||(f; x,)T 2= [2f%(t) dt + rx.? and let . H—R"*! be given by

I(£>=(M,f)~x;ug.

a

It follows by Theorem 2.1 and Corollary 2.2 that the solutions (f,, x,,)"

are of the form
(L )=petrean

ar

for some xe R"*1. It is straightforward to verify that

, M 3 at™
Pla)= ({I/F) 05T“0) - (%/l("(tz - fz))).

In order to apply Theorem 2.1 and Corollary 2.2 we need the following
lemmas.

Lemma 3.6.  Assume thar (3.8), (3.9), and (3.10) are wvalid. Then
int(C)nI"YKy)# .

Proof. Take the constants x,c(@(a), ¥{a)) and x;e{p(b), ¥{(b))
Define the function s(z) as in the proof of Lemma 3.2 and let f{t}=s{¢).
Then (f, x,)* is an interior point of C. |

Lemma 377, Assume that (3.8) and (3.9) are valid and the equation
Az=d has at least one solution z satisfving (3.13). Then nt{(C)}n

YK £ 2.

The proof is similar to the preceding proof and is omitted. By these
lemmas and Theorem 2.1 and Corollary 2.2 we conclude that

5 ( M
=P . 317
(x;,)  aof(r(t, m>> (3:17)

Now, by Remark 3.1, (3.17) is equivalent to the condition that
O(1) <X+ A+ | (f, +8) ds<Y(0)

b
::( (aTM—f,)gds+r[—a9~—~—~x;,] Ax, <0, (3.18)
Ya r{ty— 1)
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Suppose that ¢(a)<x),<y(a). Then, for some £>0, we have for
tela a+te)

0(1) <X+ A+ [ (4 8) ds< (1)

whenever supp g< [a, a +¢) and g and 4x/, are small enough. Take g with
supp g < [a, a+¢) and 4x), so that Ax,, + |2 g ds=0. It follows that

b
[ 0T —f, = aof(t— 1)+ rx) g ds <O

for all such g, whence we conclude that
oM —f, —oy/(t,—t,)+rx,, =0 for te[a,a+s).
Taking ¢ = t; we obtain
SFlt) =rxg,. (3.19)
Conversely, suppose that for some x, € (p(a), ¥(a)) we have

frzPCx’ (aTM)a

where C, = L*(a, b) is defined by (3.6), and that (3.19) holds. We claim

that
<){> e (o«o/oﬁfi n)))'

To prove the claim we first note, using the implication
t b
() <x,+ [ (f+g)ds<yn=] ("M—f)gds<0,

that ™ M —f, is constant on some interval [a, a +¢) and the constant is

T M) =) = [

Therefore, if

OO <X+ Ax4+ [ (f+g)ds<y(n),  for te(ab)
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then we have

b b
J (aTM—f,)gds+|:(t %t )wi‘x;r} Ax;,=j («"M—1,) g, ds,
a 27T a

where g, 1s defined by

1=

{g(t)+z1x;,/a for tela,a+¢)
g{t) for telateb)

Now

ot [ (frtgi) ds

{x;,+(t—a)Ax;,/s+§;gds if refa,a+¢)
X+ A, + {4 g ds if tefa+e b)

If ¢ is small enough we have

o)<+ [ (hrg)ds<yln.,  for re(ab)

and we conclude that

b
[ @ m—1) g as

a

%o

b
=J (ocTM—f,)gds+[ ~rx;,} 4x, <0,

Ir—1
which proves the claim.

To summarize we may now formulate the following theorem,

TueoreMm 3.8. Let r>0 and assume, for the problem P{r), that ¢ and
satisfy (3.8), (3.9), (3.11) and for the problem P (x) that they satisfy (3.8},
(3.9) and that equation Az =d has some solution z satisfying (3.13). Then for
the unique solution (f., x,,)* of P;(r) or P,(r) we have

fi="Pc. (a" M) for some aeR** " and x,, € [p(a), Y(a)].

Moreover

F)=rx,. i ola)<x, <yla).
Conversely, if
fi=Pc, (aTM)  forsomeaxeR"",
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A1) =rxl,, ola)<xl, <y(a) and if, for the problem P(r),
jbf,M dt =Ky +x\uq

and for the problem P ,(r),

b
[ rMat=Kz+xuo,  z=y+p0~ (ATH— K"2)

then f, is the solution of P;(r) and P ,(r), respectively.

Now let A(r) denote the minimum value for P;(r) and P,(r). One can
prove that A(r) is continuous for r>0 and that [%f*(s)ds and x, are
bounded. Therefore A(0)=h(0,) and for some subsequence of r-values
tending to zero, we have

f.—f,  weakly in L*(a, b) and x/, = x,o.
Using that P;(0) and P,(0) have unique solutions and that the functional
f [ £ dr is uniformly convex, it follows that f, — f, strongly in L*(a, b)
and that x, —> 0 as r— 0+ through all real values. Therefore we have

either x4 = ¢(a) or Y(a), or fu(¢,) =0 and ¢(a) < x,, <y(a).
From the preceding we obtain the following theorems.

THEOREM 3.9. Assume that ¢ and  satisfy (3.8), (3.9), and (3.11). Then
problem P; .(C') with C'=W?a,b) has a unique solution x, with the
property that

x"=Pc (a" M), where x'(a) = x, € [@(a), Y(a)] and e R"* 1,
Further, we have either @(a)<x,<y(a) and x"(¢t;)=0, or x,=¢@(a) or
Y(a). Conversely, if a, x,, solves the system

b
J MP, («" M) dt= Ky + x,u,
@ ‘ (3.20)
f(ty) =PCX;(°CTM)(I1) =0,
where @(a)<x, <V (a) then x" =P (a"M).
THEOREM 3.10, Assume that @ and ¥ satisfy (3.8) and (3.9). Also assume

that the equation Az=d has at least one solution satisfying (3.13). Then
P..(C’) with C'= W?(a, b) has a unique solution x, with the property that

x"=Pe(a" M), where x'(a)=x, e [@(a), ¥(a)] and acR" T,
z=y+pQ (AT~ K" a).
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Further, we have either @(a)<x,<y(a) and x"(t,}=0, or x,= ¢(a) or
Y(a). Conversely, if a, x,, solves the system

b
'[ MP (a" M) dt =Kz + x,u,
f(l1)=chva(°€TM)(f1)=0 (3.21)
Az=d,

where @(a)<x, <y(a), then x" =P, (a"M).

4. THE PROJECTION OPERATORS

In this section we assume that x/,e R is given and that
C=Cy= {feLz(a, b): () <xi+ [ fs) ds<¢(z>},

where x7,, ¢, and ¢ satisfy (3.8)-(3.10). In the main part of the section we
investigate the general structure of the projection v=P{u), for an
arbitrary ue L*(a, b). Finally we use these properties to construct a
numerical algorithm for computing P.(x#) when u is piecewise linear and
continuous.

Let us start by introducing some notation. £, and E_ are relatively
open subsets of [a, b], defined by

E = {te[a,b] :(p(t)<x;-1—J.zv(s) ds} (4.1)
E, ={te [a,b] :x;,+j'u(s) ds<xp(t)}. (4.2)

Further let £ =(a, b)\E,. It is clear that [¢,b]=FE, UE_ and that
E . nE_#J.

THEOREM 4.1. Assume that ve C and that ue L*(a, b). Then v=P(u) if
and only if the following conditions are satisfied.

(u—v) is a finite measure on (a, &), (4.3)
(u—v) <0 on E_ni{ab), (4.4}
(u—v) =0 on E_n{a,b), (4.5)
(u—v)(b_)=0 if beE_, (4.6}

(u—v)b_)<O0 if beE,. (4.7)
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Proof. Suppose first that v= P.(u). Take any Qe W'(a, b) with
supp Q< F_ n(a, b) and such that Q<0. It follows that v+eQ e C if
¢>0 is small enough. Hence we conclude that [%(u—v)(s) Q'(s) ds <0, ie.,
that (u—v)'|g_ (.5 is a finite negative measure. Similarly it follows that
(4— )| £,  (a ») 15 @ finite positive measure and we have proved (4.3)—(4.5).
Next assume that b€ E_. Then, if 6 >0 is small enough, [—6,b]cE_.
Therefore, taking

(b—8—s)/8 if b—d<s<b

Q(s)= {0 otherwise, (48)
we have
[ w0 @@a="] @-oe)d<o @)
(a,b) (b—29,b)
1e.,
! j (4 —v)(s) ds 0. (4.10)
(b—294,b)

Taking limits as 6 — 0, we obtain (4.6). Condition (4.7) follows similarly.
Conversely, assume that ve C and that (4.3)—(4.7) are valid. We are to
show that v = P(u), i.e., that

b
j (u—0)(s) g(s) ds<O  whenever w=v+gqeC. (4.11)

Therefore take Q(7) = [, g(s) ds so that

[ w=o)s)g(s) ds

(a,b)
=(u—v)(b_)Q(b)— f( ) O(s) d(u—wv)(s). (4.12)

Now if s¢ E_ then

O(s) = j (W(t) — 0(z)) de = x, + j w(t) de — [x; + J o(z) dr]

=x,+ Js w(t) dt — @(s)=0.
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Similarly, if s¢ £, then
O(s)=x,+ r w(t) dt.— [x:,—}- r v(T) er
=x;+f w(t) dt — (s) <O.

If, finally, se E,. nE_ n(a, b) then (u—v) =0. For the last term in (4.12)
we therefore obtain, using (4.4) and (4.5),

~[0Gs) dw—v)(s)

(a,b)

O(s) d(u—wv)(s)

B J‘EJr NE_n{a,b)
~[ oy du—v)o) | 0l du—v))<0. (413)

Consequently
J,,, (= 0)6) gls) ds < (w—v)(b) Q(b)

If ¢ E_ then Q(b)=0 and so by (4.7) we have (u—v)(b_)<0. If b E
then Q(b)<0 and by (4.6) we have (u—v}(b_)=0. Finally if be E_ nE
then by (4.6) and (4.7) (u—v)(b_)=0. Therefore (4.11) is true and the
proof is complete. |

As a special case we have the following corollary.
COROLLARY 4.2. If Y=o then (u—v) 20 everywhere in (a,b) and

(u—v)Y =0 on E_. Moreover (u—v)b_)<0 and vzu Finally, if
x4 (b v(s) ds > @(b) then (u—v)(b_)=0.

In order to construct explicit algorithms for the computation of P {u) it
is convenient to extract additional information about v= P.(u) under
various assumptions on the regularity of u, ¢, and . In the following
@'y (1,) denotes the left and right derivatives at ¢,, ie,

@ult0)= Hm_(9(1)= @(1o)/(1~ o)

By BV(qa, b) = L*(a, b) we understand the class of functions with bounded
variation.

640/66/3-7
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THEOREM 4.3. Assume that ueBV(a,b). Then v=P-(u)eBV(a,b).
Further, if te E° and if ¢, (t) exist then

v(t )= (1) and  v(t_)< o _(2) (4.14)
Moreover
@ ()= (D)<ulr,)—ulr_). (4.15)
Similarly, if te ES and if ', (t) exist then
o(t )<Y (2) and  v(t_ )=y’ (1), (4.16)
W)=y ()= ulr,)—u(t_). (4.17)

Proof. Let te E° . Then we have x,, + |7 v(s) ds > ¢(t) with equality for
t=1. Therefore {;v(s)ds> ¢(t)—@(¢), whence (4.14) follows. Since, by
(4.5), (u—v) =0 in a neighbourhood of ¢ we obtain

@ () —o_(O)<v(r ) —v(z )<ult,)—u(r_). (4.18)

The inequalities (4.16) and (4.17) follow similarly. ||

COROLLARY 4.4. Suppose, in addition, that ¢ or \ are differentiable at t
and that u is continuous at t. Then v is continuous at t and v(t)=¢'(t) or
v(t) =y (1), respectively.

Proof. By (4.18) we have O0<o(¢, )—v(z_)<0. 1

The next theorem deals with a case which is important for applications.

THEOREM 4.5. Assume that u, ¢, and Y are piecewise linear and con-
tinuous and that v= P-(u). Then E_ n E_ consists of at most finitely many
disjoint open intervals. Moreover, on each such interval u—v is constant.

Proof. Suppose on the contrary that E, n E_ is the union of infinitely
many disjoint open intervals. Then the endpoints of these intervals must
have an accumulation point #, belonging either to [a, b]\E_ or.
[a, bI\E .. Without loss of generality assume that tye[a, b]\E_ and
that the intervals I, =(a,, b)) c E_ n E  are located to the right of ¢, and
that a, > t,, as k— co. Now there exists an ¢>0 so that v and ¢ are
linear on (¢, to+¢€) with uw'(¢)=a and ¢’'(f)=p and we may assume
that (4, to+e)2>2Ug . If €>0 is small enough we also have
(to, to+e) = E, n(a, b) and by (4.4) and (4.5) we conclude that

(u—v) =0 on G I.c(ty, tg+¢) (4.19)

k=1

(u—v) =0 on (tg,to+¢). (4.20)
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By (4.19), v(ty=u(t)+ ¢, if teI,. By Corollary 4.4 it follows that
v(a,)=v(b ) =@ (a,)=0'(h,)=§ for all k. {420
Therefore

u(t)y=p—c, if tel,

and since u is linear on (7, 1, +¢) 2 U .., we conclude that u(t) is constant
on (ty, ty+¢). But then ' =0 and by (4.19) and (4.20) we conclude that

v'=0 on U I, c(ty, ty+¢) {4.22)

k=1

<0 on (fg, ty+2). (4.23)

Equations (4.22) and (4.21) then imply that

s(y=F on |J Iic (1 to+¢) (4.24)

k=1

v'(1)<0 on (ty, 1g+¢), {4.25)

which actually implies that v(t)==¢'(1) on (f,,1,+¢), ie, that
(to, to+ &)< [a, PINE_. This is a contradiction and consequently the num-
ber of intervals /, is finitec. By (4.4) and (4.5) we have (u—v)' =0 on cach
I, whence the last statement of the theorem follows. ||

With the notation of Section 3 we now make a few observations about
the case when u=x" M and when ¢ and y are also piecewise linear con-
tinuous functions, possibly over a different set of intervals. Consider, for
example, the set [a, b]\E = {1:x,+ [’ v(s)ds=(1)}. This set consists,
by Theorem 4.5, of at most finitcly many disjoint closed sets J, = [b,, a;, ]
and we have the following possibilities.

(i} J, does not contain any point where ¢ has a jump discontinuity.
By Corollary 44, v(1) = ¢’(t) is constant on J,. Moreover, v is continuous
at the endpoints of J,.

(1) If J, contains some point ¢, where ¢ has a jump discontinuity,
then v may have a jump discontinuity at 7, satisfying (4.14) and, by (4.18).

@ (1o) — @ (1) Stlty, ) — vty ) <O (4.26)

A necessary condition for this possibility is that ¢, (1,) < ¢ (). Similar
statements are of course true for the set [a, b]\E ., . We conclude that the
projection v = P~(u) is continuous and piecewise linear if ¢ and ¢ are
piecewise linear and continuous and if

o, Ze_. v <y {4.27)
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everywhere (ie., case (ii) cannot appear). The solution x of problem P; .,
or problem P, ., in this case is consequently a cubic spline, which is
C>-continuous.

We finish this section by indicating very briefly an algorithm for the
numerical computation of v = P(u) for the case when x/, is fixed, u=a" M,
W = o0, and ¢(z) is linear on the whole of [a, b]. To this end we formulate
a theorem which summarizes the previous discussion and Corollary 4.2.

THEOREM 4.6. Let C=C,. be defined by (3.6), where x,, is given, ¢(t) is
linear on (a, b), and Y(t)=oo. Assume that u is piecewise linear and
continuoys. Then for the projection v = P(u) it holds that

(1) o(t)=u(z) on (a, b).
(ii) v is continuous and (u—v) =0 everywhere.
(iil}y o(@)=u(t)+c,onl,=(a;, b;)=(a,b),i=1,2,..,L a,<b,<a,,,,
¢;>ci 120
(iv) v(t)=@'(¢) outside \JF_, 1.
(v) Omn each interval I, it holds that

x;+ft o(s) ds > o(1).

Since x,+ [ v(s) ds—@(t) is a function which is a piecewise second
degree polynomial over the intervals (z,,¢;,,), i=1,2,..,n+1, the
following algorithm requires, apart from rational and logical operations,
only that we solve equations of the first or second degree on the intervals
(t;5 t;+1). Apart from round-off errors the algorithm is exact. The maximal
number of operations needed is O(n?).

Algorithm for Computing the Projection v= P (u) of Theorem 4.6
l.k:=1,f:=a
2. c:=min{c:x,+ [, [u(s)+c]lds—o(t)=20,a<i<b}.
3. If ¢ <0 then v=1u. Go to end.
4. h(t):= x,+ [’ [u(s)+c] ds— o(z).
5. H i<b then
t* :=min{s:re[f b], h(t)=0},
t** ;= max {r:te[fb], h(t)=0},

else go to end.
6. If t* <r** then

a, .= Z*’ bk:= t**, Cp .= C,k:: k+1-
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7. If t* =¢** =, then
ak:= E, bk:= t*, Ck:= C.

Go to end.
8 fi= ¥
9. If 7=, then go to end.
10. T:=sup{r:te(z b], ¥ (£)>0}.
1. t:=max{t:te(f T), [‘[u(s)—u(x)]ds =0, 1<t <b}
12. ci=c—ult), h:=h—h(t), u:=u—u(r), f := 1.
13. Go to 5.
End.

Figure 2a illustrates the geometrical construction of P.(«TM) for the
case ¢ =0, Y =0, and x,=0. Figure 2¢c shows a case when ¢ =0<y =

X X X X X X
X X X X X X
X X X X
X X X X

Fic. 2. (a) Pc(u), when x'(a)=0, ¢ =0, and ¥ = co. (b) Structure of matrix G for the
example in (a). (c) Po(u), when x'(a)=0, ¢ =0, and = constant < oo.
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constant and x/,=0 (this last case however is not covered in the algorithm
above). We remark that it would be interesting to generalize the algorithm
to include both upper and lower constraints.

5. ALGORITHMS

In this section we provide Newton-type methods for problems P; ,,(C")
and P, ,(C’), assuming that we have no upper bound, ie., ¥ =co. We
start with the case of fixed end derivatives, i.e., C'=C, or C'=C,,. Using
the expression for v= P(aT M) as given in Theorem 4.6, the Peano equa-
tions (3.14) for problem P, ,, become

b
F(z) =j MP, («"M) di—Ky—u

= i jb'(aTM+ c)) M(t) dt

[=1"a
L alt1
+3 [ o0 M(r) di — Ky —u=0. (5.1)
1=0"b
Here by=t,=a, if t;€ E_ (iec. the constraint is inactive at r=1,) and
by=t,<a, else. Similarly a,, ,=1t,,,=0b, if ¢,,,€¢E_ and a,, =
t,2> b, else.
For the numerical solution of (5.1) the following result is needed.

LeMMA 5.1. Let the assumptions of Theorem 4.6 be valid and suppose
Sfurther that a,, (o) > b,(a) for all I. Then F(a) is continuously differentiable
and the derivative is given by

F'(o)=T(a)+ G(a) + H(x),

where
L by .
ty=Y J, MM, dr, (52)
=174
L 1 p&n by
gy=— X2 7 Midtj M, dt, (5.3)
I=1*%1"a a
L , oa < ob
hy= Z M;(a;, 1) 9'(a;51) @IH'“ Z M(b,) QD’(bl)é_l (54)
1=0 O‘j 1=0 OCJ'

with [;=b,—a;,, L’=L if ¢, >0, L' =L—1 else.
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Proof. We first note, by Theorem 4.6, that the numbers, ¢,, 4, and 5,
are determined from the equations

f,=0, I=1,2,.,L—1

(55)
feroa
where
rh
fr=| TM+ ey di+Gla)—olb) (56)
ay
and
5 )__{x; if /=1 and t,eF_,
pra)= ola;) else.

Equations (5.5) have unique differentiable solutions ¢,(a), a,(«), and b,{a).
Existence and uniqueness follow from Theorems 2.1 and 4.6 and the.
differentiability from the assumption g, ,{(a}> 5,{«x). Differentiating (5.5}
with respect to « yields

0 b, B
da; Oc; 0b, O, dajla;

Combining this equation with {5.6) we can verify (also using that P(a" M)
is continuous) that

de¢, 1 ¢t
G, M >0 (5.7)

The lemma follows by differentiating (5.1) and using (5.7). §
Newton’s method for solving (5.1) is
F(aF) of 1 = F'(o*) o — F(o). (58}

We shall derive a more explicit expression and first note, by (5.5) and (5.6),
that

1  aBr ‘
cl=2(¢(bz)-¢(az)~jm ocTMdt). (5.9}

Using (5.9} and (5.1)-(5.4) we have

j ’ MP, («*M) dt =T(a) 2+ G(2) o

L 1 (4 L i+ 1
+ 3 F(@(b;)««g’&(a;))fb M(nydt+ 3, fb o' M{r)dt. (5.10)
j=1%1 @t 1=0 "9

By (5.1)-(5.4), (5.8), and (5.10) we have
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LemMa 5.2. Consider problem P; .,(C') with C'=C, or C'=C,,
@ =constant and Y =oo. Then Newton’s method for solving the Peano
equations (5.1) for aeR™**! (or R"*2) becomes

1 1
(T + Gl 4 = Ky u—(plbi) — (@) [ MU (511)

Remark 5.3. Note that if L=1 and ¢, =0 the G-matrix drops out from
(5.11) and we are left with the equations for the unconstrained spline
problem.

LemMa 54. The matrix T(a)+ G(a) is symmetric and positive semi-
definite. If |{t:Y p;M,;=constant}|=0 or ¢, =0 then T(x)+ G(x) is
positive definite for all o.

Proof.

Sieren b= 3 ([ (a0n) =[5 ) |

7

+(L-L) jb (Z ﬁ,M,)2 dt=>0

by applying Cauchy-Schwarz inequality to the first sum. Since equality
occurs for 3 f,M,=constant the second conclusion follows. Finally, if
c,;=0then L-L'=1. |}

Concerning Newton’s method the following properties are well known.
LemMma 5.5. Newton's method converges at a superlinear rate to the
solution o* of F(a)=0 if
(i) F'(a) is continuous in a neighbourhood of the solution.
(ii) F'(x*) is invertible.
(ili) The initial value o° is chosen close enough to o*.
Moreover the method converges at a quadratic rate if also

(iv) F"(«) is bounded in a neighbourhood of o*.
COROLLARY 5.6.  Assume that the solution of (5.1) fullfils

(@) a (@*)>b)(a*) VI

(b)

=0 or c(a*)=0.

{t Y oaFM; = constant}
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Then if «° is chosen close enough to a*, the iterates {¢*} of method (5.11)
converge toward a* at an asymptotic rate which is at least quadratic.

Proof. The assumption (a) implies that F'(x) is continuous in a
neighbourhood of a*. The assumption (b) implies that F'(a*) is invertible.
Finaily,

0 0
” _(F/)__:_

ijkzaak if F (tij(a)_"gij(a))'

It can be verified that this last expression is a bounded function of « in
some neighbourhood of a* (we omit the details). §

We now consider the smoothing problem P, .(C’), with C'=C, or
C'=C,. Let

F(2) =jb M(t) Po(a™ M) dt. (5.12)

Then Egs. (3.16) can be written (also using (3.15))

Fi(a)+pKQ 'K'q—pKQ ‘4" =Ky +u,

(5.13)
~pAQ 'KTa+pAQ AT =d— Ay.
It may be verified easily that Newton’s method applied to (5.13) is
aktl Fl(a)o* —~ F (") + Ky +u
@+ 5 || T -
where
_[Fi@*) 0 T K7 o .
G —[ 0 0:|, Gz_[—Z] [K', —A4"] (5.15)
and

R=pkQ—"?, d=.pAQ "2

Note that G, is positive semidefinite. Further we have
LeMMA 5.7. G, is positive definite if and only if
R(AT)n R(KT)= (.

Remark 5.8. In the special case that m = 0 then, since K has full rank, G,
is always positive definite.
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CoROLLARY 5.9. Consider problem P, (C) with C'=C, or C'=C,,
@ =constant and = oco. Also assume that the condition Az=d is not
present. Then Newton’s method for solving the Peano equations (5.13) for
acR"*! (or R"*?) becomes

(T(*) + G(a*) + pKQ 1K) o+
=Ky+u—ll(¢(b1)—<p(a1))[bl M) d. (5.16)

COROLLARY 5.10. Assume that the solution of (5.13) fulfills

a, () >by(a*), Vi

Then if o° is chosen close enough to o*, the iterates {a*} of method (5.16)
converge toward a* at an asymptotic rate which is at least quadratic.

We now study briefly the case with free end derivatives.

LemMmA 5.11.  Consider problem P; ..(C') with C'=W?(a, b), Y = o0,
and @ = constant. Then Newton’s method for solving the Peano equations
(3.20) for e R"*! and x,,€ R becomes

T(*)+G¥)y W ﬁck*l B Ky—(1/1)) o(by) 2 M dt
[ wr —1/11:”: ]_l:—c’f—(l/ll)x;k—(l/ll) " OﬁkTMdt]’

tk+1
Xa ai

assuming t;€ E_ (ie., x,> ¢(a)). Here W= —u,— (1/1,) {2 M dr.

Proof. Differentiate (3.20), using (5.10), with respect to « (use
Lemma 5.1) and x/,. Use that (in (3.20)) f(¢,) = o, My(t,) + ¢, and obtain
dc,/0a from (5.7), dc,/éx,, from (5.9). Putting the derived results into the
Newton equations for (3.20) gives the above iteration. [

Remark 5.12. The Jacobian matrix J in the above iteration is no longer
positive definite (J, ., ,,,=—1/;<0). However, in our computer
experiments we still obtain good convergence properties (e.g., quadratic
convergence).

We leave it to the interested reader to write down the corresponding
Newton iteration for problem P, ,,(C’), C'= W?(a, b).
6. NUMERICAL RESULTS

We first give a brief description of the computer implementation of the
Newton schemes. At each iteration step k, the projection P, (' M) is
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computed (by the algorithm in Section 4), producing the numbers {45, b,
c¥l. Then the matrices T and G are formed. The integrals occurring in 7
and G are evaluated exactly using Simpson’s rule. T is a symmetric, tri-
diagonal matrix. The matrix G is also symmetric but has a more complex
structure. Note that there are at most two terms in the sum defining g,
{5.3), because supp(M;)=1[1,, f;,,] and there are at most two new knots
in any interval [¢,, ¢, ;]. The matrix G therefore has a block structure (the
numbers of blocks is equal to L). For an illustration, see Figure 2b, We
solve the linear system in Newton’s method by Gaussian elimination. Note
that pivoting is not needed for the case with given end derivatives. Once
the Newton iteration has converged the second derivative, x"{z}, is
recovered (using (iii), u =a* M, and (iv) in Theorem 4.6, with ¢’ =0, in our
case) and stored as a piecewise linear continuous function.

We now discuss. two ways of obtaining x(z) from x”(z). In method 1, at
all knots 7, which coincide with with an original z-knot, interpolation is
done using y; (or z; in the case of smoothing). At other knots continuity
of x and x’ provides the necessary equations. This procedure is described
in detail in [17].

In method 2 the given (or computed) value of x} is used. Simply
integrate the first segment of x”(¢) from ¢ = ¢, and use y, {or z,) and x/, as
initial values. Then proceed sequentially over all segments.

The two integration methods distribute possible errors in the coefficients
o, quite differently. By construction, method 2 will produce a solution x{z)
belonging to C*(a, b). However, x(¢) will, in case of errors in a,, not satisfy
the interpolation conditions exactly. On the other hand, method 1, by
construction, always interpolates correctly at {7;}. However, if the Peano
equations are only approximately satisfied, x'{r) will fail-to be continuous
at (7).

The choice of p and Q should be dictated by the noise component in the
data vector y. One possibility is to use cross-validation for estimating p and
QO [297]. We have adopted this technique in another context (a nonlinear
programming problem) [10]. It is quite obvious that the same approach
could be used here. We will however not pursue this in the present paper.
Instead we have taken

gy=1/1, q;=0, i#), h=max |t —t],

using a dimension argument. The value of p was varied in the tests.

We conclude this section by presenting the results from a few numerical
tests. These were all run in double precision (with a Fortran compiler) on
a SUN workstation. As error measure in the Newton iteration we used

o ot k)
err = max —&————-_i
J Iocf] + 1010
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In the figures we have listed the number of iterations needed for
err < 10 7%, In several cases, due to the quadratic convergence, err ~ 1013
As start value we picked an a° such that P(a® M)=0a’ M; ie., the next
iterate o' is associated with the unconstrained spline (¢°= (1, 1, .., 1)T was
used throughout).

We present tests for either a given value of x'(a) (x'(a) was
approximated by (y,— y,)/(¢,—t,)), Figs. 4, 4, 6; or free end derivatives,
Fig. 5. Figure 3 contains plots of monotone reconstructions of the RPN-14
data of [13] for p=0 (p=0 corresponds to interpolation; cf. (5.11) and
(5.16)) and p=1 (smoothing). Only the reconstruction up to r=11 is
shown. From then on the two curves are almost identical and constant (for
p=01in the interval [11.99, 1597, | x"(¢)| is less than 10 ~*). For p=0 the
two first active intervals are picked up in the early iterations whereas the
last one occurs for the first time in the seventh iteration. The quadratic
convergence starts at iteration 11 (there err ~0.1).

The next data set is a slight modification of the previous one. Now
x(12)=0.975, x(15)=0.965, x(20)=0.990, and all other values are identi-
cal to the RPN-14 data. The modification means that the dataset no longer
corresponds to sampling a monotone function (and hence interpolation
using ¢ =0 is no longer possible). In Figure 4 the reconstruction using
¢ =0 and p=0.01 is shown. The reconstruction using the additional con-
straint )" z,= constant was also computed (using (5.14)). However, in this
case the effect is simply adding a constant to the reconstruction obtained

:p=0, 15iter.
0.8 active : [7.9903, 8.087],
’ {10.6, 11.991, (15.9, 20]

0.7 .
....... :p=1, Iliter.

0.6- active : [10.6, 20].

0.5+

03+
0.2

0.1F

75 8 8.5 9 95 10 105 1

Fic. 3. RPN-data, x'(z) 20, x'(a) =2.76E-4.
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0.6+
p=0.01, 12iter.
active : [7.992, 8.035}), {10.3,14.99]
06k x = data-point
ol
0.2+
0 1 1 L 1 1
8 10 12 14 16 18

FiG. 4. Modified RPN-data, x'(1)> 0, x'(a) = 2.76E-4.

20

without the additional constraint. The reason is that KO '4T=0 for
A={1,1, ., 1)since Q here is a multiple of the identity matrix. Hence the

computed x” is the same for the two reconstructions (cf. (5.13)).

In Fig. 5 we consider Example 1 in [5]. Here x, is considered a free
variable and the algorithm in Lemma 5.11 is used. A similar run with the

40 - . . . , —
30k p=0, Yiter.
comp. x(-4) = 10.18988
0L active @ {-0.40747,0.40747]
104
o
10+ i
204
30 d
A s 2 i 2 2 1
0.4 3 -2 -1 0 1 2

Fig. 5. DRl-data, {ree end derivatives, x’(1})>0.
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1.2 ! T T T v T v ™ T

e 2 p=0.1, 11iter
‘active : [-1.87, -1.5002], *
[-1.195, -1.14], [-0.37,-0.202]

:p=1, 9iter.
active : [-1.801,-1.6004],
[-0.303,-0.27]

0.6

0.4

. .
02 = datapoint.

0.2 s L L " I i " " s
-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

FiG. 6. S-curve with noise, x'(7) 20, x'(a) = 1.88.

RPN-data reveals that x'(a)=¢@{a)=0 is the value corresponding to
natural boundary conditions (cf. Theorem 3.9).

Finally, we have corrupted the function exp(—x?)(an “S-curve”) with
additive noise. Figure 6 shows reconstructions for two values of the
smoothing parameter p.
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